Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Curr Oncol ; 31(3): 1129-1144, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38534917

RESUMO

BACKGROUND: Examining lung cancer (LC) cases in Virginia (VA) is essential due to its significant public health implications. By studying demographic, environmental, and socioeconomic variables, this paper aims to provide insights into the underlying drivers of LC prevalence in the state adjusted for spatial associations at the zipcode level. METHODS: We model the available VA zipcode-level LC counts via (spatial) Poisson and negative binomial regression models, taking into account missing covariate data, zipcode-level spatial association and allow for overdispersion. Under latent Gaussian Markov Random Field (GMRF) assumptions, our Bayesian hierarchical model powered by Integrated Nested Laplace Approximation (INLA) considers simultaneous (spatial) imputation of all missing covariates through elegant prediction. The spatial random effect across zip codes follows a Conditional Autoregressive (CAR) prior. RESULTS: Zip codes with elevated smoking indices demonstrated a corresponding increase in LC counts, underscoring the well-established connection between smoking and LC. Additionally, we observed a notable correlation between higher Social Deprivation Index (SDI) scores and increased LC counts, aligning with the prevalent pattern of heightened LC prevalence in regions characterized by lower income and education levels. On the demographic level, our findings indicated higher LC counts in zip codes with larger White and Black populations (with Whites having higher prevalence than Blacks), lower counts in zip codes with higher Hispanic populations (compared to non-Hispanics), and higher prevalence among women compared to men. Furthermore, zip codes with a larger population of elderly people (age ≥ 65 years) exhibited higher LC prevalence, consistent with established national patterns. CONCLUSIONS: This comprehensive analysis contributes to our understanding of the complex interplay of demographic and socioeconomic factors influencing LC disparities in VA at the zip code level, providing valuable information for targeted public health interventions and resource allocation. Implementation code is available at GitHub.


Assuntos
Neoplasias Pulmonares , Masculino , Humanos , Feminino , Idoso , Virginia , Prevalência , Teorema de Bayes , Fatores Socioeconômicos
2.
Environmetrics ; 34(1)2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37200542

RESUMO

Historically, two primary criticisms statisticians have of machine learning and deep neural models is their lack of uncertainty quantification and the inability to do inference (i.e., to explain what inputs are important). Explainable AI has developed in the last few years as a sub-discipline of computer science and machine learning to mitigate these concerns (as well as concerns of fairness and transparency in deep modeling). In this article, our focus is on explaining which inputs are important in models for predicting environmental data. In particular, we focus on three general methods for explainability that are model agnostic and thus applicable across a breadth of models without internal explainability: "feature shuffling", "interpretable local surrogates", and "occlusion analysis". We describe particular implementations of each of these and illustrate their use with a variety of models, all applied to the problem of long-lead forecasting monthly soil moisture in the North American corn belt given sea surface temperature anomalies in the Pacific Ocean.

3.
J Appl Stat ; 50(2): 231-246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36698549

RESUMO

During the current COVID-19 pandemic, decision-makers are tasked with implementing and evaluating strategies for both treatment and disease prevention. In order to make effective decisions, they need to simultaneously monitor various attributes of the pandemic such as transmission rate and infection rate for disease prevention, recovery rate which indicates treatment effectiveness as well as the mortality rate and others. This work presents a technique for monitoring the pandemic by employing an Susceptible, Exposed, Infected, Recovered, Death model regularly estimated by an augmented particle Markov chain Monte Carlo scheme in which the posterior distribution samples are monitored via Multivariate Exponentially Weighted Average process monitoring. This is illustrated on the COVID-19 data for the State of Qatar.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...